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The paper deals with the method of inverting two singular integral equations 
of the first and second kind, respectively, possessing a definite structure, The 

equations as well as their solutions are obtained on the basis of analyzing a 
specific mixed problem of the potential theory for a quadrant, 

1, Let us seek two functions, ‘pr (z) and x1 (z) regular in the upper right quadrant, 
vanishig at infinity and satisfying the following conditions at the boundary rays: 

3t(Pr (t) j-xl(t) = ft.@>, t = %, 0 & z < 00 (1.1) 

qJr(t)+X1) =fz(t); t= Q/, o<y< 00 (1.21 

Generally speaking, x is a complex parameter and the specified functions fr (t) and 

fi (t) satisfy the Holder’s condition and are of the order 0 (1 / t) at infinity. In what 

follows we shall assume, without loss of generality, that fi (t) = 0. We arrive at this 

case by subtracting from the solution which is being sought, the particular solution for 

the right semi-plane with the condition (1.2) holding along its whole boundary (and in 

particular, when fs (t) . 1s zero on the negative half of the ordinates). 

Let us introduce the auxilliary function w (t) on the ray (0 < J: < oo) 

AR (4 -xl(t) = z~(~), o<t< co (1.3) 

where A is a certain complex constant. Adding and subtracting (1.1) and (I. 3) term 

by term, we obtain 

‘pl (t) = (1.4) 

let us now define new functions q) (2) and x (z) regular in the upper right quadrant 
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The above functions are analytically continued into the lower right quadrant across the 

positive semi-axis using the formulas 

(1.6) 

Let us insert the expressions for ‘pl (z) and x1 (z) given by (1. S), into (1.1) and (1.3). 
Then the Sokhotskii-Plemelj formula yields, after simple manipulations, the following 

relations along the semi-axis .r > 0 -: 

.,I 1 
Acp(to) - x(t,) + $$&Sf$dt +-- 

‘p fl (t) 
‘4 +- % ni I t-_ dt =- co (t,) (1.8) 

0 0 

The relations (1.5) and (1.6) lead to the following condition on the ordinate for the 

functions cp (z) and x (z) regular in the right semi-plane: 
m 

‘F(t”)+;liTY?--~~~~dt--~j~dt- :l -t x ni 
(1.9) 

0 0 

-_ 

0 0 

Addition to this equation of its conjugate yields, after elementary manipulations, 

(1.10) 

Next we substitute the above expressions for v (z) and x (z) first into (1.7), then into 
(1.8). This yields a pair of singular integral equations of the first and second kind 

(1.11) 

(1.12) 
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Let us set in the last equation A = 11% and denote the auxilliary function correspon- 
ding to this particular value of the parameter A. by 6 (t): Equation (1.12) becomes 
considerably simplified for this value and degenerates into the Carleman’s equation 

x2 -- 2 
8(f,) -i--$[~dt.- g(t,), nZ-#- 1 

A=----- 

6 

33 
g(to) = 11 \ - fl (t) dt+&-&$dt 1 + 9-A t_tt,, 

0 0 

(1.13) 

(1.14) 

We note that when. 1c = + 1 , the singular integral in the left-hand side of (1.13) vani- - 
shes and we obtain 

~(t,=f&&,dt&@$-(it 
0 0 

With 6 (t) known, we turn to the relations (1.4) to find the solutions of the simplest 

fundamental and mixed problems for the quadrant, in their closed form 

r fl (t) 
Vdz)-_C&!,T-=dt+&i- m fl ct) dt 

0 o t+2 

t” fl mm xl@) = -&\ Tdtj&i -dt 
0 0 

(1.15) 

We write the solution of (1.13) (nontrivial solution of the homogeneous equation is omit- 

ted ; it can be easily derived if needed) [l, 21 

6 (to) = 
y t’lg (1) &Tg (fd - -g&T -&T \ 

. 
t dt, CL -7 -&]:I++- (1.16) 

0 

Here the argument of the logarithm must be chosen such, that - 1 < Rep <_ 1 . 
Only then the integral in the right-hand side will remain meaningful(for any to # 0) . 

We note that when the quantity Rep is positive, the density 6 (t) becomes easier to 
investigate. The case when 1 - A2 vanishes identically is omitted, as it represents 
a particular case with no direct bearing on the problem in question. We use 6 (t) ob- 
tained for A = 111~) to find from (1.1) and (1.3) the functions r& (t) and Xi (2) on 
the real ray,and we continue them analytically into the quadrant S. Incidentally, the 

expressions obtained for these functions are very simple. Indeed, substituting g (r) from 
(1.14) into (1.16) and computing the inner integral in the multiple integral that appears 
in the expression, we find, after changing the order of integration, the following simpler 
formula for the auxilliary function to replace (1.16) 

Using the above formula we arrive at equally simple expressions for the functions to 
be determined 

(1.18) 
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The above expressions satisfy the basic conditions at the quadrant boundaries identically 

(this can be confirmed by taking into account the fact that exp (nip) = X-‘). 

2. Let us return to the Eqs. (1Jl) and (1.12). Assuming that A # l/x and A2 -r 
1 # 0, we replace the density 0 (t) in these equations by o* (t) according to the for- 
mulas 

Cl)* (t) = w(t) - 2$, :, fl(% o*(t) = o(t) + 
,;I':';,;, fJ ct) (2*1) 

This appreciably simplifies their right-hand sides which consequently become 

1 F 
ni s [ 

x2+1 1 - o*(t) &--- 2x 1 t + to_ 
at = (2.2) 

0 

y fl(4 

QqfIW $$q t q 

Q* (to) - 
1 OJ s [ @ @) 

A--x 1 - .-lx & = 
(A +x) ni t + tf 1 

0 

1 + 112 

2 (1 - ‘4X) il 

2 y /l(t) 

flP0) + &+ \ T_Tdt] 

0 

(2.3) 

We note that in the first of these equations the passage to the value A = I/X when 

w* (t) = 0 (t) , is still admissible. 
We shall naturally attempt to solve the equation of the first kind 

+ \’ CL tt) [ t : t” 

; 
-- - h &-I dt = f (to) 

and then the equation of the second kind 

ptt.)+~~p(t)l~-i~]dt=~(f,) 
0 

(2.4) 

(2.5) 

combining each of them with the boundary value problem (1. l), (1.2). Here 1, B and 

C are known, generally speaking, complex constants, and f (t) is any specified func- 
tion. 

According to the transformation realized previously, the solutions of (1. ll), (1.12) 
and (2.2), (2.3) depend on the relation (2.1) where o (t), in its turn, easily links to 6 (t) 
computed according to (1.13). On the other hand, it is obvious that the solution of the 
singular equation (2.5) (of a more complex structure) coincides identically with the 
density o* (t) which satisfies (2.3) provided that the coefficients, B, C and free term 
f (t) are specified, while the parameter x , function f (t) (these two can be added to 
the exhaustive characteristics of the initial boundary value problem) and A , and found 
from the relations (*) 

l ) A similar method was used in [3] while investigating singular equations of a different 
structure. 
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It is evident that the fulfilment of these conditions leads to the equations (2.3) and (2.5) 

becoming identical. We should also note that Eq. (2.4) of the first kind can be analyzed 
directly and individually. Setting in (2.2) A = I/X which is legitimate and implies 

the conversion of O* (t) into 6(t) and choosing the parameter ?c and function f(t) in 
Eq. (2.4) so that the conditions m 

hold, we obtain our equation in the same form as (2.2). By virtue of this, the solution 

of (2.4) in general coincides with the value of the density given by (1.16) (or it will 

differ from it, at the most, by the nontrivial solutions of the homogeneous integral equa- 

tion (1.13) ; exactly the same relationship exists between the solutions of comparable 

equations of the second kind). 

3. Let us study in more detail a singular equation of the first kind 
.X7 

1 ’ -I 1 jli 
u(t) -&- --h &--I dt = /(to), o<to< = (3.1) 

0 
Let its free term vanish at infinity as before, at the rate not slower than 0 (i/t) . We 

simplify the solving procedure by assuming the parameter k to be real and not greater 
than unity, so that 1” = COST, 0 <, 8 < n . We also assume that a=; I- 6/ x < 1. 

After performing the manipulations indicated we confirm that Eq. (3.1) has two types 

of solutions, and we denote them by o (to) and p (to) . Their final expressions in closed 
form are cu 

(3.2) 

We note that the first of these solutions is continuous at the coordinate origin, while the 
second solution at this point becomes, as a rule, discontinuous. The density (1) (t) vani- 
shes at infinity, generally speaking, more slowly than could be expected, namely as 
0 (t-(1-5)). At the same time, the solution p (t) at the distant parts of the region is of 
the order 0 1 t-(l+y) 1, where y as well as fi are positive numbers obviously smaller 
than unity. The validity of (3.2) can be confirmed by direct substitution of the densities 
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into the integral equation (3.1). After some fairly cumbersome manipulations we find 
that the equation is satisfied identically in each case. In the course of these manipula- 

tions the following formulas for reducing the double integrals encountered to single in- 

tegrals, are found useful : 

m 

cos na 1 ’ ie_ 
sinnr Zni s 

(t$w - 1) f(L) g$ 
0 

1 7’ 
Cn 

_ 
I 

t*a dt i ’ +a 
ni t -- to hi s 

t, f&)3 = 
t1 + 1 

0 0 
m 

*iA&’ \ (gw” - cos nu) f (t) * 

0 

t,T”/ (tl) -!L = 
tl + t 

0 0 

1 19” 
J-i_- 
_‘- s~nnr 2ni a 

(t$“tT” - 1) j (t) & 

0 

Let us now supplement the densities (3.2) with terms of the type Clto-(L-x) and 
Czt,- (l-a), respectively. The latter terms represent the solutions of the homogeneous 

equ’ation (3.1). Expressing now one of the constants C, and Ca in terms of the other 
(depending on certain functionals related to f (t)), we reduce the expressions for the 

densities in their modified form into full agreement (although this entails fairly com- 
plicated transformations). 

Note 1. The resolving formulas (3.2) remain structurally unchanged and can still 
be used when the integration in (3.1) and hence in (3.2) is performed along a semi- 
infinite line situated in the first or the fourth quadrant, or even more generally, above 
or below the ray (0, 00). This follows from the fact that neither Eq. (3.1) itself, nor the 
corresponding formuals (3.2) include quantities related to both the density o (1) and the 
free term f (t). The simplest way of confirming the above statement in a complicated 
case, is direct checking of the transformation formulas. To do this we replace the den- 
sity o (1) in (3.1) (with a modified contour of integration) consecutively by its expres- 
sion (similarly modified) from any of the formulas (3.2) ; then it only remains to verify 
that the double integral obtained in this manner for any affix to pertaining to the semi- 
infinite line becomes identically equal to the specified free term of (3.1). 
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Note 2. Returning to the first relation of (1.4) we now convert Eqs. (1.11) and 
(1.12) into a form containing the unknown function q1 (t) itself instead of the auxilli- 

ary function o (t). After elementary manipulations we obtain 

(3.3) 

It is evident that the function q1 (3) is completely determined from the boundary 

value problem formulated in the beginning of this paper, consequenrly it must be inde- 

pendent of the constant ..I appearing as a multiplier in the secondary condition (1.3) 
introduced solely in order to develop a method perhaps not quite standard one of study- 
ing this problem. This obvious circumstance was reflected in the fact that the first equa- 
tion of (3.3) no longer contains the constant J. Nevertheless, odd as it may be, the same 
constant is retained in the second equation of (3.3). 

What we have just said does, naturally, enhance our interest in the fact which came 
to light, that the solutions of (3.1) satisfying simultaneously the initial conditions (1.1) 
and (1.2) are invariant with respect to the constant / , The first equation of (3.3) 

reflects such and only such solutions. Taking into consideration these solutions of (3.1), 
let us differentiate both sides of the second equation of (3.3) with respect to the para- 

meter ~1 . This at once yields the first equation of (3.3). 

4, Let us illustrate the behavior of the formulas (3.2) by an example, assuming that 
the free term / (t) = [n ,i (n + t)]“, where B is any positive integer and n is a po- 

sitive constant. The example helps to distinguish the nuances in the features of the 
behavior of the densities of (3.1). 

We have the following expansions (which converge in the circle )z t n 1 < n and 

differ from each other only in the sign of the power parameter): 

(4.1) 

Let us write these expansions separately for the positive and for the negative parameter 
a and then crossmultiply them term by term. Comparing both sides of the resulting 

equation we obtain after some manipulations the following formulas: 
n 

(4.2) 
v=o 

Replacing formally the integral value II by IZ - Ii, where 1~ > h- and the summa- 
tion index y by the new index )a - v, we obtain 
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(4.3) 

Let us now add to (4.2) and (4.3) another pair of expansions valid near the point z = 
- a, the pair again obtained from (4.1) by replacing a by the parameter 8 / n. Com- 
bining these equations and remembering that a = 1 - 8 / n , we arrive at a group of 
relations of the form 

c; = c”O:% + c$,, (- 1;)‘CY, = i (- l)h’c:,, (v z= 0, 1,2, . . .) (4.4) 
h’=o 

c;;,,=cr,+cr& (-l1)YCr&x= i (-1yc; (Y=O,1,2,...) 
k=O 

Expressions for the densities (3.2) corresponding to the free term in (3.1) already men- 

tioned, are easily obtained. The equation 

(4.5) 

yields, in the obvious manner, 

- 

We now add to these relations another pair of relations differing from the latter in that 

the parameter a is replaced by 8 / n. Using all these relations as well as the formulas 

(3.2), we obtain the required quantities 

0 (to) = ~{(f)a~(-l~-vCII;.[(~)v-(~).l- (4.6) 

(-y-” i (- 1P.C [( -&-)” - (+-)‘I] 
“=I 



1030 D.1.Sherma.n 

Let us insert the expressions (4.6) and (4.7) for the densities into the singular equation 

(3.1) with the free term f (t) = [a / (a +_ r)]” . Using the relations(4.2) - (4.4) and 
performing a number of manipulations we conclude that these densities are indeed the 

solutions of (3.1) when the right-hand side has the given particular form. 
It is evident that the solution (4.6) is bounded and, that it also vanishes at the point 

t = 0, while the solution (4.7) becomes discontinuous at the same point. At some dis- 

tance from the origin of the ray the expansion (4.6) consists of a set of terms containing 
t-@n-i)*a (n = 1, 2, . . .) as multipliers. The term containing tlr-aJ is absent from 
the analogous expansion for the density 1~ (t) , We see that the solutions of the type 
(4.6) and (4.7) differ from each other qualitatively. Nevertheless, the solution (4.7) 

with a discontinuity at the coordinate origin in which the constant C is fixed in an 
appropriate manner and which additionally contains the nontrivial solution of the homo- 

geneous equation (3. I), coincides completely with the solution (4.6) which is bounded 
everywhere. This conclusion can be easily reached by bringing in the auxilliary rela- 

tions (4.2) and (4.3). It may seem that the properties of the pair of solutions listed 
above are stipulated solely by a skilful rendering of the free term. Nevertheless, it must 

be assumed that these properties are typical and they reflect the interdependence of the 
solutions of the type (3.2) with an arbitrary free term f (t). 

Thus, if the density o (t) is bounded at the point t = 0, this predetermines its beha- 
vior at infinity. We may find that this is inconsistent with the necessity of ensuring the 

required order of the density decrease near the point at infinity. For this reason the in- 
troduction into (4.6) which is finite at t = 0, of a term unbounded at this point and 
satisfying the homogeneous equation (3. l), may help to correct the behavior of the den- 
sity under determination in accordance with the conditions of the problem. 
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